Handbook of Basal Ganglia Structure and Function

Edited by: Heinz Steiner and Kuei Y. Tseng
15. The Subthalamic Nucleus: From In Vitro to In Vivo Mechanisms 259

Stephane Charpier, Corinne Beurrier and Jeanne T. Paz

I. Introduction 259

II. Synaptic Organization of the Subthalamic Nucleus and Responses to Cortical Stimulation 261
 A. Inputs 261
 B. Outputs 261
 C. Responses to Cortical Stimulation 262

III. Cellular Basis of Single-Spike and Burst Firing in Subthalamic Nucleus Neurons In Vitro 262
 A. Burst Firing 262
 B. Single-Spike Activity 263
 C. In Vivo Activities of STN Neurons and their Relation to Cortical Patterns 265
 D. Anesthesia-Dependent Slow Oscillations 266
 E. Natural Patterns 266

IV. Subthalamic Nucleus, Dopamine and Parkinsonism 266
 A. Dopaminergic Control of STN Activity 266
 B. Aberrant Oscillations in the GPe-STN Network in Parkinsonism 266

V. The Subthalamic Nucleus as a Remote Control System for Cortical Seizures 267
 A. Pharmacological and Deep-Brain Stimulation Studies in Generalized Epilepsy 267
 B. Propagation of SWDs in Basal Ganglia Networks: Functional Imbalance Between Cortico-Subthalamo-Nigral and Cortico-Striato-Nigral Pathways 269
 C. Rhythmic Bursting in STN and GPe Neurons During Seizures and its Repercussion on SNr Cells 269
 D. Control of Ictogenesis by the Subthalamo-Nigro-Thalamo-Cortical Pathway 270
 E. Is There an On-line Control of Cortical Seizures by the STN? 271

Acknowledgments 271

References 271

16. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA 275

James M. Tepper

I. Introduction 275

II. Neurocytology of Nigrostriatal Dopamine Neurons 276

III. Electrophysiological Properties of Nigrostriatal Dopamine Neurons 277
 A. Extracellular Recordings 277
 B. Intracellular Recordings 279

IV. Neuroanatomy of GABA Afferents to Nigral Dopamine Neurons 280

V. Neurophysiology of GABA Afferents 281
 A. Responses to Striatal Stimulation 281
 B. Responses to Pallidal Stimulation 281
 C. Responses to SNr Stimulation 284
 D. Why are SNr Neurons so Much More Sensitive to GABA than Nigrostriatal Neurons? 285
 E. Pharmacology of GABAAergic Synaptic Responses in Nigrostriatal Neurons In Vivo 285
 F. Why are Postsynaptic GABAA Responses Seen in Response to Stimulation of GABA Afferents in Mice In Vivo, but not in Rats? 286
 G. Effects of GABA Receptor Antagonists on Spontaneous Activity in Nigrostriatal Neurons 287
 H. Afferent Regulation of Burst Firing in Nigrostriatal Neurons 289

VI. Concluding Remarks 290

Acknowledgments 291

References 291

17. Regulation of Extracellular Dopamine: Release and Reuptake 297

David Sulzer, Hui Zhang, Marianne Benoît-Marand and Francois Gonon

I. Introduction 297

II. Regulation of Dopamine Release 297
 A. Exocytotic Processes 297
 B. Regulation of Quantal Size 299
 C. Regulation of Release by Autoreceptors 301
 D. Regulation of Release by Heteroreceptors 303
 E. Relationship Between Impulse Flow and Vesicular Release 305

III. Dopamine Reuptake 307
 A. Reuptake Replenishes the Releasable Pool 307
 B. Extracellular Elimination of the Released Dopamine is Achieved by Reuptake 307
 C. Reuptake Limits Dopamine Diffusion in the Extracellular Fluid 307
 D. Regulation of Dopamine Reuptake by D2 Autoreceptors 310

IV. Relationship Between the Firing of Dopamine Neurons and Extracellular Dopamine 310
A. The Tonic Extracellular Dopamine Level 310
B. Phasic Changes in Extracellular Dopamine 310

V. Conclusions 312
References 312

Part D
Network Integration

18. Organization of Corticostriatal Projection Neuron Types 323
Anton Reiner
I. Introduction 323
II. Cortical Projections to Basal Ganglia – Historical Overview 323
III. Corticostriatal Neuron Types 325
IV. Ultrastructure of Cortical Input to Striatum 328
V. Differential Input of Cortex to Striatal Neurons 330
A. Anatomical Evidence 330
B. Electrophysiological Evidence 333
C. Open Questions 334
VI. Functional Considerations 334
A. Motor Control 334
B. Motor Learning, Corticostriatal Plasticity and the Differential Cortical Input to Striatum 335
Acknowledgments 337
References 337

19. Gating of Cortical Input to the Striatum 341
Jeffery R. Wickens and Gordon W. Arbuthnott
I. Introduction 341
II. Anatomy of Corticostriatal Input Pathways 342
III. Corticostriatal Mapping 342
IV. Cortical Cells of Origin 342
V. Terminal Distribution of Corticostriatal Axons 343
VI. Significance of Corticostriatal Statistics 344
A. Lack of Output Flexibility 345
B. Broad Tuning 345
VII. Synaptic Plasticity in the Corticostriatal Pathway 346
VIII. Synthesis and Conclusions 348
Acknowledgment 348
References 348

20. Organization of Prefrontal-Striatal Connections 353
Henk J. Groenewegen and Harry B.M. Uylings
I. Introduction: Prefrontal Cortex-Basal Ganglia Circuits 353
II. Prefrontal Cortex and Striatum 354
III. Topographical Organization of Prefrontal-Striatal Projections 355
A. Medial Prefrontal and Agranular Insular Projections to the Striatum 355
B. Orbital-Prefrontal Projections to the Striatum 357
IV. Relationships of the Prefrontal-Striatal Projections with the Compartmental Structure of the Striatum 357
A. Striatal Compartments: Patch-Matrix and Shell-Core 357
B. Prefrontal Cortical Lamination and Striatal Compartments 358
V. Cortico-Cortical and Corticostriatal Relationships 359
VI. Relationships of the Prefrontal-Striatal Topography with Other Striatal Inputs 361
A. Triadic Relationships of the Thalamic and Limbic Projections with the Prefrontal-Striatal System 361
VII. Medium-Sized Spiny Projection Neurons: Integrators of Striatal Inputs 363
References 363

21. Gating of Limbic Input to the Ventral Striatum 367
Patricio O’Donnell
I. Introduction 367
II. The Nucleus Accumbens: A Forebrain Gateway 368
III. Electrophysiological Properties of MSNs that Shape Input Integration 368
A. Up and Down Membrane Potential States and Ensemble Coding in the NAc 368
B. Up States Depend on Glutamatergic Inputs 370
C. Dopamine Modulation of Up States 371
IV. Hippocampal Gating of Prefrontocortical Throughput 373
V. Other Inputs Can also Drive Up States and Command Neuronal Activity in the Nucleus Accumbens 374
VI. The Nucleus Accumbens, a Behavioral Switchboard 375
References 377
I. INTRODUCTION
This review deals with one central question: How is the discharge activity of dopamine neurons translated into a chemical signal, i.e., into dynamic changes in the extracellular dopamine level? The extracellular dopamine level results from an equilibrium between dopamine release and dopamine clearance. In the first section, we discuss how dopamine release is achieved and regulated. The second section focuses on dopamine reuptake, which is the main mechanism of dopamine clearance. Finally, both release and reuptake are integrated to describe the relationship between the firing of dopamine neurons and the extracellular dopamine level. We do not discuss here how the discharge activity of dopamine neurons is generated and regulated (recently reviewed in Grace et al., 2007; see Chapter 16).

II. REGULATION OF DOPAMINE RELEASE
Dopamine neurotransmission is generally initiated by synaptic vesicle fusion, which can be modulated at different levels including dopamine synthesis, uptake and vesicular transport as well as Ca\(^{2+}\) homeostasis and exocytotic proteins. In addition, dopamine autoreceptors expressed on dopamine neurons and presynaptic axon terminals provide feedback and regulate dopamine release.

A. Exocytotic Processes
1. Quantal Dopamine Release
In 1950, Bernard Katz and Paul Fatt at University College London published recordings of random electrical “noise” consisting of spontaneous small, rapid “action potentials”
at the frog neuromuscular junction they compared to “fluctuations in the number of light quanta which strike the [photo]receptor cells” (Fatt and Katz, 1950). These “miniature end plate potentials” required extracellular calcium and were exacerbated in high osmolarity solution (Fatt and Katz, 1952). The events fitted well with a Poisson distribution, which simulates the probability of random occurrences of a multiple basic event (Del Castillo and Katz, 1954), indicating that neurotransmission occurs in multiples of a basic “quantal” unit. From these data and others, Fatt conjectured that “the apparatus for the release of acetylcholine at a junction is subdivided into a large number of units (at least 100), each of which is able to operate independently of the rest” (Fatt, 1954).

While adrenal cell extracts provided the subject of the original studies of secretory transmission (Oliver and Schafer, 1895), catecholamines activate G protein-coupled receptors that do not produce rapid potential changes, and four decades transpired until the measure of the quantal catecholamine release event. In 1990, Mark Wightman and colleagues (Leszczyszyn et al., 1990) used carbon fiber electrodes, originally designed by Gonon et al. (1978), to provide amperometric detection of quantal catecholamine release from adrenal cells. In contrast to postsynaptic recording, amperometric recordings directly measure the number of molecules released and the duration of the quantal release event, which in adrenal chromaffin cells were found to release about $\sim 10^6$ molecules over the course of $\sim 10^{-3}$ sec.

Amperometric recordings were adapted to record from the axonal terminals of cultured midbrain dopamine neurons, which produced quantal events that were about three orders of magnitude smaller and of shorter duration than that from adrenal cells (Pothos et al., 1998a; Staal et al., 2004). The material measured by the amperometric recordings was identified as dopamine based on (1) reserpine blockade; (2) colocalization with tyrosine hydroxylase immunolabel; (3) dependence on sufficient oxidation potential; (4) absence of events recorded in neurons that lack dopamine; (5) elevation of quantal size following l-DOPA or increased vesicular catecholamine transporter (VMAT2) expression. The shape of the majority of quantal dopamine events in neurons closely fit a simulation of transmitter diffusion through a pore (Sulzer and Pothos, 2000), but there are events that deviate from such simple shapes (see below).

In cultured dopamine neurons, quantal events have been observed to date in axons and not from cell bodies, but similar events have been recorded from acutely dissociated substantia nigra neuronal cell bodies (Kim et al., 2008), which may represent either normal dendritic quantal release events or synaptic vesicles that would have otherwise been trafficked to axons. Similar events have been found in acute midbrain slices, although it is difficult to exclude release from nearby dopamine or serotonergic terminals (Jaffe et al., 1998). In any case, while dopamine is well established to be released from dendrites, normal dendrites have few obvious synaptic vesicles in electron microscopy, and VMAT2 is mostly found in tubular structures (Nirenberg et al., 1996b). Quantal dopamine release from synaptic vesicles has also been recorded by amperometry from retinal bipolar cells (Puopolo et al., 2001) and invertebrate vesicles has also been recorded by amperometry from retinal bipolar cells (Chen et al., 1995; Sulzer et al., 1995).

2. The Synaptic Vesicle Cycle

The fundamental difference between the quantal release of catecholamines from adrenal and other secretory glands and central dopamine neurons is due to differences in the storage vesicle. In adrenal medullary cells, the large (150–300nm diameter) “chromaffin granules” (Cramer, 1918) that accumulate catecholamines (Blaschko and Welch, 1953; Hillarp et al., 1953) fuse with the plasma membrane to exocytose transmitter, but do not recycle locally to produce new storage vesicles.

In contrast, the relatively complex “cycle” of synaptic vesicles leads to a range of means to regulate synaptic transmission. Soon after early electron microscope images of synapses demonstrated the presence of small (~ 40nm diameter) “synaptic vesicles” in axonal terminals (Palade, 1954; De Robertis and Bennett, 1955), Sanford Palay made a link between Fatt’s conjecture from quantal recording, writing, “The heretofore unrecognized structure demanded by these physiological data may be the small vesicles which crowd the axon terminals, cluster at the junctional surface, and open onto the intrasynaptic space” (Palay, 1956).

Indeed, catecholamine synaptic vesicles played an important role in confirming the hypothesis that synaptic vesicles store and release neurotransmitter, as they accumulate osmophilic catecholamine reaction products (Wood, 1966) and the osmophilic false transmitter 5-hydroxydopamine (Tranzer and Thoenen, 1967).

Eric Holtzman (Holtzman et al., 1971) and subsequently Bruno Ceccarelli (Ceccarelli et al., 1972) showed that fluid phase endocytotic tracers such as horseradish peroxidase are accumulated by synaptic vesicles during stimulation, and that after the tracer is removed, further stimulation eliminates the label. This demonstrated that small synaptic vesicle membrane was endocytosed from the plasma membrane following
full fusion and that synaptic vesicles were reformed (i.e., recycled) and then underwent further bouts of fusion to release the tracer. Early studies indicated that some vesicles may fuse transiently via a fusion pore without full fusion (Ceccarelli et al., 1973; Heuser and Reese, 1973; Valtorta et al., 2001), a process typically known as ‘kiss-and-run’ fusion, and although clearly demonstrated for large dense core vesicles (Williams and Webb, 2000), this continues to be controversial for small synaptic vesicles (Klyachko and Jackson, 2002; Gandhi and Stevens, 2003; Mitchell and Ryan, 2004; Staal et al., 2004; Zhang et al., 2009a), although amperometric recordings of quantal dopamine release are consistent with “flickering” reversible fusion pore formation (see following section).

The synaptic vesicle cycle introduced by Holtzman and Ceccarelli can be modeled as a series of kinetic steps, including the uptake of neurotransmitter by specific transporters that utilize an energy gradient formed by an ATP driven proton pump, trafficking of vesicles to a presynaptic release site, a “docking” step which tethers the vesicle to its eventual site of fusion with the plasma membrane, a “priming” step during which the docked vesicle is placed in a fusion-ready state, a fusion step which may proceed via full fusion with the membrane or transient fusion, and a series of recycling steps leading to vesicle reformation (Edwards, 2007).

3. Dopamine Vesicle Fusion Events and Quantal Size

Amperometric recordings from chromaffin and mast cells suggest that the fusion pore during large dense cored vesicle fusion can exist in at least two states, a “foot” that represents a reversible fusion pore, and a full event that often indicates full fusion (Alvarez de Toledo and Fernandez, 1990; Chow et al., 1992; Albillos et al., 1997; Xu and Tse, 1999). Such findings suggest that fusion pore modulation is capable of affecting the amount and kinetics of transmitter release.

Amperometric recordings at high time resolution (~50μsec) demonstrate that dopamine small synaptic vesicle fusion pores flicker either once (simple events) or multiple times in rapid succession (complex events), with each flicker releasing on average ~25–30% of total vesicular dopamine. The type of event is apparently regulated by PKC activity (Staal et al., 2004), as drugs that enhance PKC activity increase the number of events per stimulus but decrease the fraction of complex events, whereas staurosporine, a broad spectrum kinase inhibitor, decreases the number of events but enhances the fraction of complex events. Complex events may provide a means by which neurons can rapidly reuse vesicles without undergoing the comparatively slow process of recycling. As complex events release a higher quantal size, complex events could regulate the spillover of neurotransmitter (see below). Transient flickering of the fusion pore also appears to occur in adrenal chromaffin and other large dense cored vesicles (Alvarez de Toledo and Fernandez, 1990; Zhou et al., 1996) but the duration of dopamine synaptic vesicles subunits is considerably shorter (100–150μs vs. 10,000–500,000μs respectively), occurs at a much higher frequency than in LDCVs (4000Hz vs. 170Hz) (Zhou et al., 1996), and releases a far greater fraction of the vesicle’s neurotransmitter (25–30% vs. <1%) (Zhou et al., 1996).

B. Regulation of Quantal Size

In addition to the mode of fusion, a variety of means to regulate steps in synaptic vesicle cycling that modify the quantal size of dopamine neurotransmission have been identified: detail is provided in extensive reviews (Sulzer and Pothos, 2000; Edwards, 2007). Pertinently, there has been a long-standing parallel effort on the part of William Van der Kloot to detail presynaptic mechanisms that lead to altered quantal size in the neuromuscular junction, and his reviews, which precede the advent of amperometric quantal detection in the CNS, are highly recommended (Van der Kloot, 1991; Van der Kloot and Molgo, 1994).

1. Altered Free Energy for Vesicular Dopamine Sequestration

In the 1980s, work by several groups characterized how chromaffin granules maintain high levels of monoamines against a large concentration gradient (Njus et al., 1986; Johnson, 1988). In isolated chromaffin granules, monoamines (A) distribute according to the electrochemical gradient composed of the voltage gradient DY and pH gradient as:

\[
\log([A]_\text{in}/[A]_\text{out}) = \Delta \Psi F/RT + 2\Delta \text{pH}
\]

In chromaffin granules, granule pH is often estimated to be ~5.6, the cytosolic pH ~7.2, and DY ~ + 80mV. Assuming RT/F = 59mV, this indicates an equilibrium transvesicular catecholamine gradient of ~36,000:1.

This relationship hints at multiple interventions that might alter quantal size. First, we will discuss effects on the right hand side of the equation the pH and electrical gradients. Then, we will discuss effects of the left side of
the equation, the dopamine concentration gradient across the membrane.

2. pH, Electrical Gradients, and Amphetamines

The pH gradient is provided by the vacuolar H\(^+\)-ATPase, which consists of V0 and V1 subunits (Drory and Nelson, 2006; Nakanishi-Matsui and Futai, 2006). [Some data implicate the V0 domain in the process of vesicle fusion as well (Peters et al., 2001; Hiesinger et al., 2005).] Mani and Ryan have used “synaptopHlorin”, a fluorescent pH sensitive mutation of the synaptic vesicle protein synaptobrevin, to determine that the internal pH of dopamine synaptic vesicles in situ is about 5.6 (Mani and Ryan, 2009): while the pKa of the protein is neutral, they took advantage of the dependence of total fluorescence on the contribution of plasma membrane synaptopHlorin to solve a simultaneous equation that would describe changes due to weak base induced synaptic vesicle pH collapse and quenching of the external signal using acidic buffer.

Exposure of isolated catecholamine vesicles to protonophores collapses the pH gradient and rapidly redistributes transmitter from inside to outside the vesicle (Johnson, 1988; Sulzer and Rayport, 1990), while the proton pump inhibitor bafilomycin reduces quantal size in chromaffin cells (Pothos et al., 2002). Lipophilic weak bases such as chloroquine are distributed across membranes according to the pH gradient (Maron et al., 1983). As their concentration becomes sufficiently high, they exceed the buffering capacity of the vesicle interior and collapse the pH gradient. Thus, lipophilic weak bases collapse the pH gradient, leading to decreases in quantal size (Sulzer et al., 1995). The amphetamines are weak base compounds that are the only widely used class of drugs that elicit transmitter release by a non-exocytic mechanism (Sulzer et al., 2005). It seems likely that as both VMAT and DAT substrates (Amara and Kuhar, 1993; Pifl et al., 1995), amphetamines are effectively sequestered in vesicles. Amphetamine provided a first instance of pharmacological manipulation of dopamine quantal size, as seen in an adrenal derived cell line (PC12 cells) (Sulzer et al., 1995). Cyclic voltammetry (CV) recordings in the acute striatal slice strongly suggest that similar actions occur in intact tissue (Jones et al., 1998a; Schmitz et al., 2001). Interestingly, two classes of dopamine vesicles are detected in the giant dopamine neuron of Planorbis corneus, and they are differentially depleted by amphetamine (Anderson et al., 1998).

An unexpected effect of prolonged amphetamine or weak base exposure, at least in adrenal vesicles, is a delayed rebound hyperacidification that eventually leads to an enhanced quantal size (Markov et al., 2008), although this has not been explored for small synaptic vesicles. Likewise, extensive depolarization also acidifies chromaffin vesicles (Pothos et al., 2002) and increases quantal size (Finnegan and et al., 1996; Pothos et al., 2002), in tandem with a greater proportion of larger “active” vesicles that contain a halo around the dense core (Colliver et al., 2000; Pothos et al., 2002), [see also (Han et al., 1999; Elhamdani et al., 2001; Camacho et al., 2006; Camacho et al., 2008)]. The means by which prolonged weak base exposure or stimulation regulate enhanced acidification are unknown, although PKA and PKC effects on quantal size and exocytosis (Machado et al., 2001; Staal et al., 2008) may be involved, as these kinases can be regulated by activity, via calcium-dependent mechanisms. Calcium gradients may further regulate vesicle trafficking (Camacho et al., 2008).

It appears that additional regulation of ionic conductances, particularly via chloride channels (Jentsch et al., 2005), trp channels (Krapivinsky et al., 2006) and glutamate accumulated by a vesicular vGluT transporter (R.H. Edwards et al., under submission) across the synaptic vesicle also control the net accumulation of dopamine, by regulating the electrical gradient, although this has to date been explored mostly in adrenal chromaffin and other large dense cored vesicles (Barasch et al., 1988; Tamir et al., 1996; Pothos et al., 2002).

3. Transmitter Concentration Gradients

If the electrochemical gradient is unchanged, a 2-fold increase in cytosolic levels of transmitter should produce a 2-fold increase in quantal size. Typically, the synthesis of L-DOPA from tyrosine via tyrosine hydroxylase provides the rate-limiting step in catecholamine synthesis, and so the dopamine precursor L-DOPA is the most widely used clinical intervention for Parkinson’s disease. Amperometric recordings demonstrate that L-DOPA rapidly elevates quantal size in midbrain neurons (Pothos et al., 1998a; Puopolo et al., 2001; Kim et al., 2008) and secretory cells (Pothos et al., 1996; Pothos et al., 2002). The effects on quantal size appear consistent with in vivo cyclic voltammetry results, where L-DOPA rapidly increased evoked dopamine release (Garris et al., 1994). Tyrosine hydroxylase activity appears to underlie changes in quantal size mediated by D2 autoreceptors in PC12 cells (Pothos et al., 1998b) in addition to autoreceptor-mediated effects on the number of events released (see below).
4. VMAT2 Activity

The level of VMAT expression further regulates dopamine accumulation. As originally reported by Carlsson and Kirshner in chromaffin vesicles, inhibition of VMAT1 with reserpine decreases catecholamine content (Carlsson et al., 1962; Kirshner, 1962), and consistently, amperometry showed that it decreased quantal size (Kozminski et al., 1998). More surprisingly, reserpine decreased the volume of large dense cored vesicles, while l-DOPA exposure increased the vesicle volume, with the resulting catecholamine concentration apparently remaining constant (Colliver et al., 2000; Pothos et al., 2002; Gong et al., 2003). The means by which large dense cored vesicle volume changes occur remain obscure.

Expression of the CNS transporter, VMAT2, can convert even hippocampal neurons to secrete dopamine in the presence of l-DOPA (Li et al., 2005). In cultured dopamine neurons, overexpression of VMAT2 markedly increases quantal size, and also increases the number of events per stimulus, likely by revealing events that were otherwise buried in the noise (Pothos et al., 2000). While quantal recordings have not been conducted in neurons underexpressing VMAT2, mutants with low VMAT2 activity release less dopamine (Patel et al., 2003; Croft et al., 2005), whereas VMAT2 overexpressing mice release more (H. Zhang, R. Edwards, et al., unpublished results), suggesting that corresponding changes in quantal size occur. Interestingly, VMAT2 knockout mice appear to recycle synaptic vesicles in dopamine terminals normally, indicating that recycling steps may be independent of the rate of transmitter accumulation (Croft et al., 2005).

5. Growth Factors

Exposure to glial-derived neurotrophic factor (GDNF) increases the quantal size of dopamine release neurons (Pothos et al., 1998a), although whether this occurs by altering energy or substrate concentration gradients, transporter activity, vesicle fusion, or vesicle volume remains unknown.

6. Regulation of the Number of Quanta Released

As apparent from the steps involved in the synaptic vesicle cycle, there are likely to be multiple presynaptic means to regulate the number of dopamine quantal events evoked per stimulus. As demonstrated by Fatt and Katz (1952), extracellular calcium regulates quantal release; the role of presynaptic calcium channels in dopamine release has been characterized in axon terminals (Phillips and Stamford, 2000), which contain N and P/Q type calcium channels, as well as dendrites (Chen et al., 2006b; Beckstead et al., 2007), where CaV1.3 channels in the substantia nigra (Nedergaard et al., 1993; Chan et al., 2007) regulate pacemaking. A variety of heteroreceptors and the D2 autoreceptor appear to regulate these calcium currents (Cardozo and Bean, 1995) (see below).

While there has been little analysis of the regulation of dopamine synaptic vesicle recycling and reacidification, there is evidence suggesting that this occurs at somewhat higher rates than for hippocampal terminals under high stimulus (Mani and Ryan, 2009). The fusion of chromaffin large dense cored vesicles is regulated by the adaptor protein AP-3 (Grabner et al., 2005; Grabner et al., 2006) and over-expression of the neuronal isoform reduces quantal size while the loss of AP-3 increases quantal size with consistent changes in vesicle volume. Although AP-2 and AP-3 are involved in synaptic vesicle recycling (Voglmaier et al., 2006) their effects on dopamine quantal size are unreported.

A relatively surprising means to regulate quantal dopamine release is via alpha-synuclein, which inhibits dopamine release. The inhibition of dopamine release by alpha-synuclein is attenuated with high activity and high calcium (Abeliovich et al., 2000; Yavich et al., 2004; Yavich et al., 2005), possibly as high calcium redistributes alpha-synuclein away from synaptic vesicles (Fortin et al., 2004). In chromaffin cells, this inhibitory effect appears to take place at a late pre-fusion “priming” step (Larsen et al., 2006).

Relatively little research has examined quantal dopamine release for mutations of proteins directly involved in exocytosis, such as the SNARE proteins or synaptotagmin, as most efforts have examined such roles in adrenal cells or the adrenal-derived PC12 cell line (Wang et al., 2003). Examination of synapsin I/II/III triple knock-out mice, however, revealed that these proteins regulate dopamine synaptic vesicle “reserve pools” (Venton et al., 2006).

C. Regulation of Release by Autoreceptors

Dopamine autoreceptors expressed on dopamine neurons and presynaptic axon terminals provide feedback and regulate dopamine release. While activation of dopamine autoreceptors decrease release by inhibiting dopamine synthesis and enhancing dopamine reuptake by the dopamine transporter as well as regulating VMAT expression (Schmitz et al., 2003), here we specifically review data on effects on the probability of release events.
Dopamine autoreceptors belong to the D2-family (D2, D3, D4) of dopamine receptors that are coupled to inhibitory G proteins and modulate ion channel activity and/or inhibit adenylyl cyclase. D2 receptors are expressed along the somatodendritic extent of midbrain dopamine neurons, as well as at their axon terminals in the striatum and nucleus accumbens (Sesack et al., 1994). Roles for D2 autoreceptors in presynaptic regulation are clearly established, but a role for D3 autoreceptors has been controversial. D3 immunoreactivity was found in almost all midbrain dopamine neurons, but is undetectable in the terminal regions (Diaz et al., 2000). While it has been suggested that both D2 and D3 receptors function as autoreceptors (Sokoloff et al., 1990; Gaintedinov et al., 1994; Tepper et al., 1997; Zapata et al., 2001), no deficits in autoreceptor functions were apparent in D3 receptor knockout mice, although extracellular dopamine was elevated in the ventral striatum (Koeltzow et al., 1998). D2 receptor knockout mice exhibited no detectable autoreceptor response to D2-class receptor agonists in firing rate, dopamine release or dopamine synthesis. Thus, results implicated the D2 receptor as the only functional autoreceptor in the D2-family (Mercuri et al., 1997; L’Hirondel et al., 1998; Benoit-Marand et al., 2001; Schmitz et al., 2002). Nevertheless, one study of D3 KO mice using CV in striatal slices has demonstrated a small D3 role for regulation of secretion, but not synthesis, in the striatum (Joseph et al., 2002).

Studies on transfected cells demonstrated that D3 receptors can modulate the same ion channels G protein-activated inwardly rectifying potassium channels (GIRKs) as D2 receptors (Kuzhikandathil et al., 1998; Kuzhikandathil and Oxford, 1999, 2000), and have the potential to affect dopamine release (Tang et al., 1994). However, a study on acutely dissociated midbrain neurons from D2 receptor knockout mice did not find evidence for D3 receptor-activation of GIRK currents (Davila et al., 2003).

There is little evidence supporting a role of D4 receptors as autoreceptors beyond an immunohistochemistry study that demonstrated presynaptic D4 receptor localization in a subset of mesoaccumbal terminals in the nucleus accumbens shell (Svingos et al., 2000).

In summary, it appears that dopamine autoreceptor function is predominantly carried out by D2 receptors. In recent studies, it has been suggested that of two isoforms of the D2 receptor generated by alternative splicing, D2S and D2L, D2S serves presynaptic autoreceptor functions regulating dopamine release while D2L acts mainly at postsynaptic sites (Usiello et al., 2000; Wang et al., 2000; Centonze et al., 2002; Rouge-Pont et al., 2002).

1. In Vitro Studies

The regulation of dopamine release by dopamine autoreceptors was initially studied in vitro with neurochemical approaches (Starke et al., 1989). D2 autoreceptor activation inhibits axon terminal (Starke K et al., 1978; Cubeddu and Hoffmann, 1982; Dwoskin and Zahniser, 1986; Mayer et al., 1988; Pulija et al., 1990; Kennedy et al., 1992; Cragg and Greenfield, 1997) and somatodendritic dopamine release (Cragg and Greenfield, 1997).

The molecular mechanism underlying the inhibition of dopamine release through terminal D2 autoreceptor is unknown. One possibility is that D2 autoreceptors inhibit the voltage-gated Ca$^{2+}$ channels in axon terminals, thus directly inhibiting Ca$^{2+}$-dependent release of dopamine. Patch clamp studies on dopamine midbrain neurons in vitro have revealed a D2 receptor regulation of voltage-gated calcium currents (Cardozo and Bean, 1995) and axon terminal dopamine release is dependent on N and P/Q type calcium channels (Phillips and Stamford, 2000; Chen et al., 2006a). This has not been proven directly, however, and a study on autapses (i.e., synapses that a neuron makes on itself) of midbrain neurons in culture found no evidence for a D2 autoreceptor regulation of calcium influx (Congar et al., 2002) but that 4-aminopyridine-sensitive K$^+$ channels acting downstream from calcium influx are involved. Autapses of cultured dopamine neurons are glutamatergic (Sulzer et al., 1998), however, and it is not known whether this finding can be extrapolated to dopamine release. Nevertheless, the broad-spectrum K$^+$ channel blockers 4-aminopyridine and tetrodathalammonium limit quinpirole ability to inhibit evoked dopamine release in slices (Cass and Zahniser, 1991), supporting a role for presynaptic K$^+$ channels.

2. In Vivo Studies

The regulation of dopamine autoreceptors was subsequently shown in vivo with microdialysis. Indeed, systemic administration of D2 antagonists enhances the extracellular dopamine level (Imperato and Di Chiara, 1985). Moreover, intrastriatal infusion of D2 agonists or antagonists decreases or enhances extracellular dopamine, respectively (Imperato and Di Chiara, 1988). This autoregulation acts on the impulse flow-dependent dopamine release (Imperato and Di Chiara, 1985) and is not mediated by an indirect action on striatal neurons (Westerink and De Vries, 1989). However, the extracellular dopamine level results from a dynamic equilibrium between dopamine release and...
dopamine reuptake, and microdialysis is not suitable for distinguishing between changes in release and reuptake.

In vivo electrochemical studies have shed light on the D2 autoregulation of dopamine release and of dopamine reuptake. These studies confirmed that the tonic level of extracellular dopamine concentration is high enough to exert a tonic stimulation of D2 autoreceptors, which inhibits the impulse flow-dependent dopamine release (May and Wightman, 1989; Suaud-Chagny et al., 1991). However, the electrochemical techniques used in these initial studies were too slow to describe the kinetics of the D2 autoregulation. The use of a faster technique and of control experiments with mice lacking D2 receptors made it possible to describe the dynamic characteristics of D2 autoregulation (Benoit-Marand et al., 2001). The amplitude of the dopamine release per pulse was tested with brief electrical stimulations (three pulses at 100 Hz) and the inhibitory effect of conditioning stimulation on the response to the test stimulation was investigated. The onset of the D2 effect is between 50 ms and 100 ms. The D2 inhibition reaches a maximum between 150 and 300 ms after the end of the conditioning stimulation and disappears within 800 ms (Benoit-Marand et al., 2001). Similar kinetics have been described with in vitro experiments (Phillips et al., 2002; Schmitz et al., 2002) with the maximum effect around 500 ms and a duration of less than 5 sec. The slightly longer time course determined in the in vitro studies is likely due to the larger amount of dopamine released per stimulation in slice preparations.

D. Regulation of Release by Heteroreceptors

In addition to D2 autoreceptors, there are additional neurotransmitter receptors on dopamine cell bodies and terminals, but their modulatory roles in dopamine release are less well characterized. Although modulation of dopamine transmission can occur at both the midbrain dopamine cell bodies and at the presynaptic terminals, we focus this discussion on the terminal level. For effects on cell bodies, we refer to other studies (e.g., Bonci et al., 2003; Mansvelder et al., 2003; Margolis et al., 2003; Cruz et al., 2004) (see also Chapter 16).

Most drugs including nicotine, ethanol, opioids, morphine, and cannabinoids enhance dopamine neuronal activity by acting directly on dopamine neurons or indirectly on GABA interneurons through the mechanism of disinhibition (Cheer et al., 2004). Electron microscopic demonstration of heteroreceptor immunolabel in dopamine terminals is invaluable for establishing their presence, but there are relatively few studies in this area due to technical difficulties. To date, only the GDNF receptor (Araujo et al., 1997), nicotinic receptors (nAChRs) (Wonnacott et al., 2000), delta and kappa opioid receptors (Svingos et al., 1999; Svingos et al., 2001), the metabotropic receptor mGluR1 (Paquet et al., 1997), and possibly the GABA(B) receptor (Charara et al., 2000) have been observed by ultrastructural immunolabel in dopamine terminals. Although the presence of other presynaptic receptors in dopamine terminals remains to be fully elucidated, studies using synaptosome preparations, microdialysis, and CV recordings in vivo and in vitro suggest important roles for heteroreceptor modulation on dopamine release, albeit with some conflicting results.

1. Glutamate Receptors

While microdialysis studies indicated a stimulatory effect for ionotropic glutamate receptors on dopamine release, CV recordings demonstrated an inhibitory role on evoked dopamine release in the terminal region (Wu et al., 2000; Kulagina et al., 2001; Avshalumov et al., 2003). The effects of ionotropic glutamate-receptor activation on dopamine release are most likely indirect given that dopamine terminals lack these receptors (Bernard and Bolam, 1998; Chen et al., 1998). Recent studies by Margaret Rice’s group suggest that glutamatergic regulation of dopamine release are indeed indirect and mediated by AMPA receptors on striatal cells, which is in turn mediated through retrograde signaling by diffusible H₂O₂ generated in striatal cells, rather than in dopamine axons (Avshalumov et al., 2008). In contrast to ionotropic glutamate receptors, the metabotropic receptor mGluR1 has been detected by ultrastructural immunolabel on striatal dopamine terminals (Paquet and Smith, 2003), and evoked dopamine release can be inhibited via metabotropic glutamate receptors on dopamine terminals (Zhang and Sulzer, 2003).

2. GABA Receptors

By local infusion of GABA(A) and GABA(B) receptor agonists and antagonists in the striatum of intact and kainic acid lesioned rats, microdialysis data support a direct influence of GABA on the dopamine terminals via presynaptic GABA(B) receptors, while the effects via the GABA(A) receptor seem to be postsynaptic and mediated by striatal interneurons (Smolders et al., 1995). The direct effect of GABA(B) receptors on dopamine release is further supported by a study using CV recordings, which shows that GABA(B) receptor agonists inhibit single pulse evoked dopamine release in the striatal slice with kinetic parameters similar to those of the D2 autoreceptor (Schmitz et al., 2002). There is ultrastructural
Evidence consistent with expression of GABA(B) receptors on dopamine terminals (Charara et al., 2000).

Functional studies suggest that GABA(A) receptors might be colocalized on the dopamine terminals. Muscimol, a GABA(A) receptor agonist, inhibits the evoked dopamine release in striatal synaptosomes (Ronken et al., 1993) and muscimol also inhibits evoked dopamine release by single pulse stimulation measured by CV in striatal slices (Zhang and Sulzer, unpublished observations).

3. Acetylcholine Receptors

Classical pharmacological studies of the effects of muscarinic acetylcholine receptors (mAChRs) on dopamine release in the striatum have led to contradictory results (Lehmann and Langer, 1982; Raiteri et al., 1984; Schoffelmeer et al., 1986; Kemel et al., 1989; Xu et al., 1989; De Klippel et al., 1993; Smolders et al., 1997), likely due in part to the diversity of the mAChR subtypes involved in this activity and the limited receptor subtype selectivity of the muscarinic agonists and antagonists used in these studies (Wess, 1996). Activation of mAChRs was shown to inhibit dopamine release in slices examined by CV (Kudernatsch and Sutor, 1994). A human-brain imaging study indicated a tonic muscarinic inhibition of dopamine release (Dewey et al., 1993). A study using genetically altered mice that lacked functional M1–M5 mAChRs provides evidence of the different physiological roles of individual AChRs in a direct manner (Zhang et al., 2002). The results show that M3 receptors inhibit release, whereas M4 and M5 receptors facilitate release, and M1 and M2 receptors had no effect on dopamine release. It seems that the modulating effects of M3 and M4 receptors are mediated via striatal GABA release. M5 receptor mRNA is the only mAChR subtype mRNA detectable in the dopamine-containing cells of the substantia nigra pars compacta (Vilaro et al., 1990; Weiner et al., 1990), suggesting that the dopamine release-facilitating M5 receptors are located on dopamine nerve terminals.

Nicotinic acetylcholine receptors (nAChRs) are expressed on dopamine terminals in the striatum (Wonacott et al., 2000; Zoli et al., 2002). Nicotine enhanced the extracellular dopamine level by microdialysis (Pontieri et al., 1996) and results in vivo indicate that nicotine, like cocaine and alcohol, increase the frequency of non-evoked dopamine transients in the nucleus accumbens (Cheer et al., 2007). CV studies demonstrated an inhibition of evoked dopamine release in slices by nicotinic agonists (Kudernatsch and Sutor, 1994; Zhou et al., 2001). Because nAChRs antagonists also inhibit dopamine release, it appears that nicotine is excitatory for dopamine release, but the receptor is rapidly desensitized by nicotine application (Zhou et al., 2001; Rice and Cragg, 2004; Zhang and Sulzer, 2004).

4. Opioid Receptors

Kappa opioid receptors are located on dopamine axon terminals (Svingos et al., 2001), while mu opioid receptors are not expressed on striatal dopamine axon terminals (Trovero et al., 1990). Using CV, Schlosser et al. (1995) demonstrated that mu, delta, and kappa opioid receptors exerted an inhibitory control on striatal dopamine release (see also Chapter 29). It seems that the effect of kappa opioid receptors on dopamine overflow is likely to be direct, while the influence of mu opioid receptors is indirect, mediated by an inhibition of cholinergic interneuron activity (Svingos et al., 2001; Britt and McGehee, 2008). Whether the effect of delta opioid receptors on dopamine release is direct remains unclear since ultrastructural studies show that delta opioid receptors are present on dopamine terminals (Svingos et al., 1999).

5. Adenosine Receptors

It is unclear whether there is a direct heteroreceptor modulation by adenosine on dopamine release. Activation of A1 receptors inhibits dopamine release (Jin et al., 1993; Quarta et al., 2004) and activation of A2A receptors increases dopamine release in the striatum (Golembiowska and Zylewska, 1998). CV studies also demonstrate that A1 receptor agonists decrease single pulse evoked dopamine release in vitro, but the inhibition is dependent at least in part on the simultaneous activation of D1 dopamine receptors. While the mechanism underlying this interaction remains to be determined, it does not appear to involve an intramembrane interaction between A1 and D1 receptors (O’Neill et al., 2007). To date, the morphological evidence of presynaptic localization of A1 receptors on dopamine terminals is still indirect (Mahan et al., 1991; Rivkees et al., 1995; Glass et al., 1996). Furthermore, the lesion of glutamatergic, but not dopamine, striatal afferents significantly decreases striatal A1 receptor function and agonist binding (Alexander and Reddington, 1989). In addition, there are no A2A receptors on dopamine terminals (Hettinger et al., 2001; Rosin et al., 2003). Therefore, the main mechanism underlying adenosine-mediated modulation of striatal dopamine release may be indirect (see also Chapter 11).
6. **Cannabinoid Receptors**

CV studies have not identified a direct presynaptic modulation of dopamine release by type 1 cannabinoid (CB1) receptors (Szabo et al., 1999; Zhang and Sulzer, 2003; Sidlo et al., 2008), in agreement with the lack of anatomical evidence of CB1 receptor on dopamine terminals (Matsuda et al., 1993; Romero et al., 1997; Fusco et al., 2004). Nevertheless, there are indirect effects by cannabinoids on dopamine release. Ventral tegmental area dopamine neurons are thought to produce the cannabinoids (Riegel and Lupica, 2004; Lupica and Riegel, 2005; Matyas et al., 2008), which would be expected to activate local receptors. CB1 agonists decrease evoked dopamine release while increasing the frequency of non-evoked dopamine concentration transients in rat striatum, responses that may be related to effects on neuronal firing (Cheer et al., 2004). Additional effects can be seen in striatal slices, where a CB1 agonist decreased DA released over trains of stimuli, suggesting cannabinoids exert indirect changes via a local striatal circuit. Rice and colleagues have suggested this could occur via a non-synaptic mechanism involving inhibition of GABA release, generation of hydrogen peroxide, and activation of KATP channels to inhibit DA release (Sidlo et al., 2008).

In addition, there are additional ionotropic and G-protein-linked receptor candidates that may act as heteroreceptors on dopamine terminals, and elucidation of their effects is fundamental for understanding their roles in modulating dopamine transmission.

E. **Relationship Between Impulse Flow and Vesicular Release**

1. **Frequency Dependent Modulation of Dopamine Release**

As detailed above, numerous studies provide evidence for heteroreceptor regulation of dopamine release, although some results are controversial due in large part to different preparations, stimulation and recording paradigms. In vivo and in vitro data in slices with local stimulation cannot exclude circuit effects. There are striking differences between such results in the slice preparation where there is significant paired pulse depression, and in vivo, where there is typically no detectable depression. While the basis for these differences remain unclear one factor is presumably due to the loss of most ongoing synaptic activity in the slice. Furthermore, most voltammetry studies in striatal slice only examine the effects evoked by single pulse stimuli mimicking the tonic firing mode, while recent studies have demonstrated the frequency dependent modulation of dopamine release by nAChRs (Rice and Cragg, 2004; Zhang and Sulzer, 2004; Zhang et al., 2009b).

Nicotine shifts VTA neurons from tonic to burst firing modes (Grenhoff et al., 1986; Mansvelder et al., 2003) and enhances extracellular dopamine as measured by microdialysis (Pontieri et al., 1996). On the other hand, nicotine at levels thought to be experienced by smokers (~250–300 nM) desensitizes nAChRs so rapidly that tonic ACh activation is blocked and evoked dopamine release is potently inhibited (Kudernatsch and Sutor, 1994; Zhou et al., 2001).

In order to resolve the question of how nicotine both elevates extracellular dopamine and depresses evoked dopamine release, the effect of nicotine on the modulation of evoked dopamine release were compared under different firing patterns and found to be dependent on the firing pattern of dopamine neurons. While desensitization of nAChRs indeed curbs dopamine released by stimuli emulating tonic firing, it allows a rapid rise in dopamine from stimuli emulating the phasic firing patterns associated with incentive/salience paradigms. Nicotine may thus enhance the contrast of dopamine signals associated with behavioral cues (Rice and Cragg, 2004; Zhang and Sulzer, 2004) (Fig. 17.1). Interestingly, mu opioid agonists also inhibit dopamine overflow elicited with single-spike stimuli while leaving that produced by burst stimuli unaffected, but these differential effects are mediated by nAChRs and caused by inhibition of cholinergic interneurons (Britt and McGehee, 2008).

Remarkably, most heteroreceptors studied to date have been found to depress dopamine release. Therefore, in addition to D2 autoreceptors, most heteroreceptors in vivo may maintain the dopamine release probability at a low level, which may then provide a marked and rapid increase in dopamine concentration during phasic firing. A range of drugs that affect the dopamine system may exert their actions via altering the signal/noise ratio of dopamine by affecting heteroreceptors on dopamine terminals as well as on cell bodies (Zhang and Sulzer, unpublished observations).

2. **Failure of Vesicular Release at Individual Dopamine Terminals**

In the sympathetic nervous system the release of noradrenaline exhibits a very low probability per release site (about 1%) (Msghina et al., 1993). In other words, although electrically evoked action potentials always reach sympathetic terminals, very often they do not trigger noradrenaline release. Despite
this very high rate of failure (99%), the contraction of certain smooth muscles (e.g. the rat tail artery) is entirely due to the stimulation of extracellular noradrenergic receptors by the impulse flow-dependent noradrenaline release. Indeed, robust contraction is achieved by a burst of action potentials, which triggers an extracellular accumulation of released noradrenaline because noradrenaline reuptake is too slow to clear noradrenaline during this burst (Gonon et al., 1993).

The high rate of failure at single sympathetic terminals has been precisely estimated with electrophysiological techniques but similar data are not available regarding the dopamine transmission. The use of a fluorescent dopamine analog as a fluorescent false neurotransmitter shows that the fraction of total presynaptic dopamine released per action potential is far less than 1% and is regulated by the frequency of activity (Gubernator et al., 2009). This, however, does not directly indicate the failure rate of vesicular release at individual terminals because each terminal contains hundreds of vesicles (Hersch et al., 1995).

However, it is likely that the rate of failure of dopamine terminals is much lower than regarding the sympathetic terminals. First, failure of noradrenaline release has been also observed with carbon fiber electrodes coupled with electrochemical techniques, which monitored the noradrenaline released from some tens of terminals (Msghina et al., 1993). In contrast, with a similar approach no failure of dopamine release was observed in the rat nucleus accumens (Garris et al., 1994). Second, the averaged amplitude of the noradrenaline overflow evoked in a sympathetic preparation by a single pulse stimulation is about 50 times smaller than that of the dopamine overflow evoked in vivo in the striatum by a single pulse stimulation (compare data from (Gonon et al., 1993) with those from (Benoit-Marand et al., 2000)).

FIGURE 17.1 Modulation of evoked dopamine (DA) release by nAChRs depends on firing pattern. (A, B) Voltammetric responses before and after 10-min bath application of nicotine (Nic, 300 nM) or mecamylamine (Meca, 2 μM) at different stimuli. The inhibition of evoked release was not blocked by D2 dopamine, GABA(A), GABA(B) or ionotropic glutamate receptor antagonists. (C, D) Frequency modulation of nicotine and mecamylamine effects on dopamine release (mean ± s.e.m., n = 8 for control; n = 5 for nicotine, n = 4 for mecamylamine; *P < 0.05 compared with respective control values by Student’s t-test). Top panels: evoked dopamine release normalized to that elicited by 1p stimulation under control condition. Bottom panels: relative evoked dopamine release after nicotine and mecamylamine at different stimulation frequencies. (E-H) Effects of number of pulses, nicotine and mecamylamine on dopamine release at 20 Hz (E, F) and 100 Hz (G, H) (mean ± s.e.m., n = 4–8, *P < 0.05 compared with respective control values by Student’s t-test). Data from Zhang and Sulzer (2004), copyright by Nature Publishing Group.
III. DOPAMINE REUPTAKE

During the 1960s it was shown that dopamine neurons are equipped with a dopamine transporter (DAT) and it was hypothesized that DAT might control the intensity and duration of the dopamine transmission. Here, we focus on this functional role of dopamine reuptake, while other aspects of DAT are reviewed elsewhere (Uhl, 2003).

Microdialysis and voltammetric techniques coupled with carbon fiber electrodes were developed during the 1980s and enabled monitoring the extracellular level of dopamine in vivo. Both technical approaches showed that in resting conditions, this level was low (10–20 nM) and that dopamine reuptake strongly contributed to clearing dopamine from the extracellular space. Indeed, pharmacological inhibition of dopamine reuptake potently enhanced the extracellular dopamine level (Gonon and Buda, 1985; Church et al., 1987) and this enhancement was no longer observed after blocking the impulse flow-dependent dopamine release (Carboni et al., 1989). These approaches, however, were too slow to accurately describe the kinetics of dopamine clearance and could not distinguish between an increase in dopamine release and a decrease in dopamine clearance. Both issues were resolved with improvements in voltammetric techniques (Wightman and Zimmerman, 1990; Dugast et al., 1994). Moreover, the design of mice lacking DAT (Giros et al., 1996) made it possible to investigate the relative contribution of dopamine reuptake to dopamine clearance versus extracellular degradation, non-neuronal uptake and diffusion.

A. Reuptake Replenishes the Releasable Pool

In dopamine terminals, dopamine is synthesized from L-DOPA by a decarboxylase and L-DOPA is synthesized from tyrosine by tyrosine hydroxylase (TH), an enzyme that is specifically expressed by catecholaminergic neurons. However, pharmacological inhibition of TH activity by alpha-methyl-para-tyrosine (AMPT) only partly and very slowly depresses the dopamine tissue content (Jones et al., 1998b) and in vivo dopamine release (Benoit-Marand et al., 2000) in wild-type (WT) mice. In DAT −/− mice, although TH activity is doubled, AMPT induces a profound and rapid decrease of the dopamine tissue content (Jones et al., 1998b) and of in vivo dopamine release (Benoit-Marand et al., 2000). These observations demonstrated that in brain structures densely innervated by dopamine terminals, recycling of released dopamine by reuptake plays a major role in replenishing the releasable pool of dopamine.

B. Extracellular Elimination of the Released Dopamine is Achieved by Reuptake

Electrical stimulation of the dopamine axons either with a single pulse or with a brief train (e.g. four pulses at 100 Hz) induces a brief dopamine overflow that can be detected with rapid electrochemical techniques either in vitro (Schmitz et al., 2001) or in vivo (Dugast et al., 1994; Garris et al., 1994). The decay phase of this evoked dopamine overflow reflects the clearance of released dopamine. Dopamine reuptake inhibitors slow down the clearance kinetics by one order of magnitude (Garris et al., 1994; Suaud-Chagny et al., 1995; Schmitz et al., 2001). However, in the striatum of DAT −/− mice the decay phase is slowed down by two orders of magnitude both in vitro (Giros et al., 1996; Jones et al., 1998b) and in vivo (Benoit-Marand et al., 2000). Pharmacological inhibition of dopamine degradation does not further slow the decay phase in DAT −/− mice in vitro. However, in vivo, inhibition of dopamine degradation by monoamine oxidase slightly slows the decay phase in the striatum of DAT −/− mice but not in WT mice. Therefore, in brain structures densely innervated by dopamine terminals, dopamine reuptake represents the only mechanism responsible for the clearance of released dopamine (Jones et al., 1998b; Benoit-Marand et al., 2000). The roles of extracellular dopamine degradation and of non-neuronal uptake are negligible compared to dopamine reuptake. In DAT −/− mice, dopamine clearance is mainly due to dopamine diffusion (Jones et al., 1998b; Benoit-Marand et al., 2000).

In brain structures weakly innervated by dopamine terminals, such as the amygdala, the prefrontal cortex (PfC) and the cingulated cortex (CgC), the clearance of released dopamine is much slower than in the striatum (Garris and Wightman, 2004). Indeed, the half-life for dopamine uptake is about 2 sec in these structures whereas it was estimated to be 60 ms in the striatum (Garris and Wightman, 1994). Moreover, inhibitors of dopamine reuptake are less efficient at slowing dopamine clearance in these brain structures than in the striatum (Garris and Wightman, 1995; Mundorf et al., 2001). At least in PfC and CgC, the released dopamine is partly cleared by the noradrenergic transporter (Mundorf et al., 2001).

C. Reuptake Limits Dopamine Diffusion in the Extracellular Fluid

1. Diffusion and Reuptake of Dopamine Quanta in the Extracellular Fluid

In the striatum, most dopamine terminals form small symmetrical synaptic contacts on the neck of dendritic spines...
of medium sized spiny neurons (Freund et al., 1984) (Fig. 17.2A). Striatal postsynaptic dopamine receptors are either of the D1 or of the D2 type and are not located in front of the dopaminergic contacts (Hersch et al., 1995; Caille et al., 1996) but are distributed along the dendritic membrane with a higher density in the perisynaptic zone of the asymmetric synapses formed by corticostriatal glutamatergic terminals on the head of the dendritic spine (Fig. 17.2A). Moreover, reuptake sites are evenly distributed on the membrane surface of dopamine fibers and are rarely observed on the dopaminergic synaptic membrane (Nirenberg et al., 1996a; Pickel et al., 1996; Hersch et al., 1997). These subcellular observations strongly suggest that the dopamine transmission is mainly extrasynaptic (Pickel et al., 1996) and that dopamine diffuses from release sites within the synaptic cleft to extrasynaptic dopamine receptors. Moreover, all dopamine receptors belong to the family of G-protein coupled receptors. Stimulation of G-protein receptors requires a minimal level of neurotransmitter, which depends on the receptor affinity, present for several tens of milliseconds (Hille, 1992). In the striatum D1 receptors appear to be in a low affinity state (1 μM) whereas D2 receptors are in the high affinity state (10 nM) (Richfield et al., 1989). Indeed, the basal extracellular dopamine level due to the tonic discharge activity of dopamine neurons is in the range of 10–20 nM and is high enough to exert a tonic stimulation of presynaptic (Gonon and Buda, 1985) and postsynaptic (Svenningsson et al., 1999) D2 receptors.

Cragg and Rice (2004) have thoroughly investigated the diffusion of dopamine in the extracellular space. Assuming that a quantal release event of dopamine occurs at time $t = 0$ they calculated the change in extracellular dopamine

$$DA_{overflow} \text{ at carbon fiber electrode}$$

After nomifensine 0.5 μM

Control

DA concentration at a distance r from one release site

Diffusion only: $r = 1 \mu m$ 2 μm 5 μm 10 μm 20 μm

10 ms 100 nM 10 nM 1 nM 100 pM

1 pulse

10 ms 20 ms 50 ms 100 ms 500 ms

Diffusion only: Diffusion + uptake:

FIGURE 17.2 Kinetics of dopamine diffusion and reuptake in the extracellular space. (A) This drawing summarizes morphological data concerning the dopamine transmission on striatal medium sized spiny neurons. The extracellular volume represents about 15–20% of the whole tissue volume. Dopamine terminals form symmetric contact with the neck of dendritic spines, whereas glutamatergic excitatory synapses are characterized by asymmetric contacts on the head of the spines. Postsynaptic dopamine receptors are rarely observed inside the dopaminergic synaptic cleft and are denser in the perisynaptic zone of the glutamatergic synapses. (B) When a quantum of dopamine ($Q = 9800$ dopamine molecules) is released in the synaptic cleft at time $t = 0$ (arrows), dopamine diffuses outside the synaptic cleft. At increasing distances from the release site the simulated transient changes in dopamine concentration are increasingly affected by dopamine reuptake. Note progressive changes in concentration and time scales with increasing distances. (C) Effect of reuptake inhibition by nomifensine (20 mg/kg, s.c.) on the dopamine overflow evoked by single pulse stimulation. Single pulse stimulations of the medial forebrain bundle were applied every 15 s. The resulting dopamine overflow was monitored in vivo in the striatum with a carbon fiber electrode coupled with continuous amperometry. The traces show the averaging of 20 recordings before (control) and 20 min after nomifensine injection. (A and C) data from Gonon (1997), copyright by Society for Neuroscience. (B) data from Cragg and Rice (2004), copyright by Elsevier.
concentration at variable distances from the release site (Fig. 17.2B). They showed that at short distance (1 and 2μm) diffusion entirely governs the dopamine overflow, whereas at increasing distance from release site (5 to 20μm) dopamine reuptake increasingly limits the dopamine overflow both in term of maximal amplitude and duration. However, in the latter distance range, the maximal amplitude of the dopamine overflow is below 100 nM. Therefore, Cragg and Rice suggested that dopamine transmission mediated by D1 receptors occurs at a maximal distance of 2μm from the release site and is not affected by dopamine reuptake. In contrast, the dopamine transmission mediated by D2 receptors might be effective at a distance of 7μm from release sites. This distance as well as the duration of effective D2 stimulation (i.e. time during which the extracellular dopamine concentration exceeds 10 nM) is limited by dopamine reuptake (Cragg and Rice, 2004).

This view that released dopamine escapes the extrasynaptic cleft and that its diffusion is not strongly affected by dopamine reuptake in the vicinity of release sites (i.e. at a distance <5μm) has been experimentally supported by electrochemical measurements of the electrically evoked dopamine overflow. Indeed, inhibition of dopamine reuptake strongly slows dopamine clearance but only moderately enhances the maximal amplitude of the dopamine overflow evoked by a single pulse (Fig. 17.2C) (Garris et al., 1994; Gonon, 1997; Schmitz et al., 2001). This is due to the fact that diffusion at short distance (<5μm) is faster than dopamine reuptake. Indeed, the half-life for dopamine clearance, which has been calculated from in vivo recordings, is about 30 ms (Garris et al., 1994; Gonon et al., 2000).

2. Extracellular Summation of Multiple Quanta: Role of Reuptake

In the striatum, the density of dopamine terminals is very high and the average distance between two terminals is about 4μm (Doucet et al., 1986). If single pulse stimulation triggers dopamine release in a small fraction of dopamine terminals, every active single release site and its sphere of influence must be considered independently as discussed by Cragg and Rice (2004). Alternatively, if most terminals synchronously release single dopamine quanta in response to single pulse stimulation, the extracellular dopamine level largely results from a spatial summation of released quanta. As discussed above under the section on Failure of vesicular release (p. 305), it is likely that the failure rate of vesicular release is low regarding dopamine terminals in vivo.

This view that the extracellular dopamine level largely results from a spatial summation of quanta from neighboring terminals is further supported by in vivo estimates. Indeed, the maximal amplitude of the dopamine overflow evoked by a single pulse in the rodent striatum and measured in vivo by a carbon fiber electrode, is in the range of 100–400 nM (Fig. 17.2C) (Dugast et al., 1994; Garris et al., 1994; Benoit-Marand et al., 2000; Venton et al., 2003). However, this observed value represents an underestimate of the genuine change in the intact tissue. Models of electrochemical monitoring assume that between the intact tissue and the electrode surface, there is a dead zone with a thickness of 6–8μm (Gonon et al., 2000; Schmitz et al., 2001; Venton et al., 2003). This estimate is consistent with an electron microscopy study showing the extent of the tissue damage generated by the implantation of a carbon fiber electrode for 4h in the striatum of anesthetized rats (Peters et al., 2004). This dead zone slows the kinetics of the evoked dopamine overflow and diminishes their maximal amplitude. Therefore, the dopamine overflow recorded by a carbon fiber electrode is much larger than expected by Cragg and Rice’s calculation unless dopamine overflow summation from several dopamine terminals is taken into account (compare Figs 17.2B and C). Nevertheless, this apparent spatial summation from multiple release sites is limited by dopamine reuptake (Gonon, 1997).

In summary, dopamine overflow evoked in the striatum by single pulse stimulation exhibits two phases. The rising phase is rapid and mainly reflects dopamine release. The decay phase is slower and reflects dopamine reuptake. The kinetics of release and reuptake can be obtained by simulation taking into account the diffusion of dopamine from the intact tissue to the electrode surface through the dead zone. These simulations show that the half-life of released dopamine in the striatum in vivo is about 30 ms (Garris et al., 1994; Gonon et al., 2000; Schmitz et al., 2001; Venton et al., 2003). In this period of time the diffusion distance for dopamine is about 7μm. Therefore, in a given point of the extracellular space, release sites at a distance >7μm do not significantly contribute to the dopamine overflow. Thus, in the striatum and other brain structure densely innervated by dopamine terminals the dopamine transmission is extrasynaptic but, nevertheless, spatially constricted by dopamine reuptake.

In brain structures with a much lower DAT density, such as the PfC and CgC, diffusion plays a larger role in the clearance of released dopamine. However, even in these regions, pharmacological inhibition of DAT strongly slows the clearance of released dopamine (Mundorf et al., 2001).
D. Regulation of Dopamine Reuptake by D2 Autoreceptors

In vivo studies (Cass and Gerhardt, 1994; Rothblat and Schneider, 1997) show that D2 antagonists slow the clearance of exogenously applied dopamine. Moreover, D2 antagonists decrease the rate of elimination of endogenous dopamine released in vivo by electrical stimulation (Benoit-Marand et al., 2001; Wu et al., 2002). Kinetics analysis of reuptake parameters shows that haloperidol reduces the Vm but does not affect Km (Wu et al., 2002). This inhibition of dopamine reuptake is not due to the direct effect of D2 antagonists on DAT activity because it is not observed in mice lacking D2 receptors (Dickinson et al., 1999).

The stimulation of D2 autoreceptors by the basal extracellular dopamine level exerts a tonic inhibition of the impulse flow-dependent dopamine release and, therefore, D2 antagonists facilitate dopamine release by blocking this D2 inhibition (see Section IIC). In contrast, the inhibitory effect of D2 antagonists on DAT activity does not seem to be due to the blockade of a tonic stimulation of D2 receptors. Indeed, the rate of elimination of electrically evoked dopamine release is not altered in D2−/− mice compared to WT mice (Rouge-Pont et al., 2002). Whatever the mechanism, the inhibition of DAT activity acts in synergy with the facilitation of dopamine release by D2 antagonists to enhance impulse-flow dependent dopamine overflow. Both mechanisms should be taken into account when considering the therapeutic effects of D2 antagonists as well as their side effects.

IV. RELATIONSHIP BETWEEN THE FIRING OF DOPAMINE NEURONS AND EXTRACELLULAR DOPAMINE

Dopamine neurons exhibit two patterns of discharge activity: a continuous mode with regularly spaced spikes at a frequency between 2 and 5 Hz, and a bursting activity characterized by brief bursts of 2 to 6 action potentials (Grace and Bunney, 1984a,b) (see also Chapter 16). Single dopamine neurons switch between the patterns. In resting condition and during sleep most dopamine neurons discharge with the tonic mode, but rewarding or sensorial stimuli predicting a reward trigger in most dopamine neurons a single burst both in rats (Hyland et al., 2002) and monkeys (Schultz et al., 1993; Mirenowicz and Schultz, 1996). In rats the intra-burst frequency is 15–30 Hz (Grace and Bunney, 1984b; Hyland et al., 2002). Grace and Bunney hypothesized that the bursting mode would be more potent than the tonic pattern to induce dopamine release (Grace and Bunney, 1984b). Accordingly, electrical stimulations mimicking the bursting mode were twice as potent as regularly spaced stimulation having the same whole duration and number of pulse to enhance the extracellular dopamine level (Gonon, 1988). However, these data were erroneously interpreted as a non-linear relationship between dopamine release and the impulse flow frequency.

A. The Tonic Extracellular Dopamine Level

When most dopamine neurons discharge in the tonic mode, the pause between two successive action potentials reaching the same release site exceeds 200 ms. Therefore, the dopamine released by one action potential is completely cleared by reuptake before the next action potential. This view has been experimentally demonstrated in vivo with electrical stimulation of the dopamine fiber at 4 Hz (Chergui et al., 1994). Although this point has not been extensively studied to our knowledge, the degree of synchronous activity of dopamine neurons is probably low during tonic activity. Indeed, synchronous activity has been observed between pairs of adjacent neurons recorded with the same electrode (Wilson et al., 1977; Grace and Bunney, 1983) but not between pairs of distant neurons recorded with two electrodes (Wilson et al., 1977) and this synchrony has been reported to be more prominent during bursting activity (Grace and Bunney, 1983). Thus, taking into account the very high density of dopamine terminals in the striatum, the tonic activity induces a steady-state extracellular dopamine level, in the range of 10–30 nM, which is stable with time and spatially homogenous (Venton et al., 2003). However, this steady-state is almost entirely firing dependent (Gonon and Buda, 1985; Svenningsson et al., 1999). A pause in the tonic discharge activity of dopamine neurons induces a rapid and profound (−80%) decrease in the extracellular dopamine level (Gonon, 1988; Suaud-Chagny et al., 1992). Dopamine reuptake limits this tonic extracellular level. Indeed, pharmacological inhibition of dopamine reuptake increases this level by +300% (Gonon and Buda, 1985; Carboni et al., 1989; Venton et al., 2003). While in DAT−/− mice, the basal extracellular dopamine level is five times as large as in WT mice (Jones et al., 1998b).

B. Phasic Changes in Extracellular Dopamine

1. Electrically Evoked Dopamine Overflow

Electrical stimulations mimicking the bursting mode are more potent than regularly spaced stimulations evoking dopamine release.
overflow, but this is not due to a facilitation of the release per se. Indeed, in the frequency range of 15–100 Hz brief train pulse stimuli (2 to 6 pulses) induce in vivo a larger dopamine overflow than that evoked by a single pulse stimulation, mostly due to extracellular accumulation of the released dopamine with successive pulses (Chergui et al., 1994; Garris et al., 1994; Venton et al., 2003). Indeed, in DAT−/− mice the maximal amplitude of the dopamine overflow evoked by a four-pulse stimulation is independent of frequency (15 or 4 Hz), whereas in WT mice the ratio S(15 Hz)/S(4 Hz) is 2.4 in the dorsal striatum and 3.0 in the nucleus accumbens (Fig. 17.3) (Benoit-Marand et al., 2000). Burst-induced extracellular accumulation is higher in the nucleus accumbens than in the dorsal striatum because dopamine reuptake is about twice as slow in the former than in the latter region. Therefore, the specificity of the bursting mode over the tonic pattern results from the kinetics of dopamine reuptake rather than from changes in the quantal release per pulse. As expected, pharmacological inhibition of DAT activity increases the amplitude and duration of the phasic dopamine overflow evoked by a train pulse stimulation (Garris et al., 1994; Suaud-Chagny et al., 1995; Venton et al., 2003). Indeed, DAT inhibition facilitates the extracellular accumulation of dopamine with successive pulses.

2. Dopamine Transients in Behaving Animals
Rewards or stimuli predicting a reward evoke a burst of action potential in most dopamine neurons with a similar delay and duration both in monkeys (Mirenowicz and Schultz, 1996) and rats (Pan et al., 2005) (see also Chapter 31). Therefore, in behaving rats, brief changes in extracellular dopamine, similar in kinetic and amplitude to dopamine overflow evoked by brief electrical stimulation, can be observed (Robinson et al., 2001; Robinson et al., 2002). As expected, DAT inhibition increases the maximal amplitude and duration of these dopamine transients to the same extent as dopamine overflow evoked by brief electrical stimulations (Robinson and Wightman, 2004). Moreover, in the nucleus accumbens dopamine transients clearly result from the bursting discharge activity of VTA dopamine neurons. Indeed, NMDA-mediated excitatory inputs to VTA dopamine neurons generate their bursting activity (Suaud-Chagny et al., 1992; Chergui et al., 1993; Overton and Clark, 1997). Specific manipulations of these inputs by local VTA injections of NMDA and of NMDA antagonists in freely moving rats alter the frequency of dopamine transients in the expected way (Sombers et al., 2009). Therefore, these dopamine transients represent dopamine overflow evoked by naturally occurring bursts of action potentials.

While dopamine neurons initially respond with a burst to unpredicted reward, after intense training they respond to a cue predicting a reward but no longer to the expected reward, both in monkeys (Schultz et al., 1993; Mirenowicz and Schultz, 1996) and rats (Pan et al., 2005). Electrochemical studies show the same relationship between dopamine transients and reward or cue predicting a reward (Day et al., 2007) (Fig. 17.4). Dopamine neurons

![FIGURE 17.3](image-url) Dopamine overflows evoked in nucleus accumbens (NAc) by stimulations mimicking the spontaneous activity of dopamine neurons. Medial forebrain bundle electrical stimulations consisted of four pulses either at 4 or at 15 Hz. The dopamine overflow was recorded with a carbon fiber electrode coupled with continuous amperometry. Electrodes were calibrated for dopamine concentration after in vivo recordings. The figure shows typical recordings obtained from one DAT+/+ and one DAT−/− mouse. Notice that the time scale is not the same with DAT+/+ and DAT−/− because dopamine clearance is much slower in DAT−/− mice. Stimulations mimicking a spontaneous burst (four pulses at 15 Hz) were more efficient than stimulations mimicking the single spike discharge mode (four pulses at 4 Hz) to evoke dopamine overflow (Benoit-Marand et al., 2000), copyright by Elsevier.
are preferentially activated with a burst by appetitive stimuli and are inhibited by aversive stimuli both in monkeys (Mirenowicz and Schultz, 1996) and rats (Ungless et al., 2004; Pan et al., 2005). Likewise, appetitive stimuli trigger dopamine transients whereas aversive stimuli briefly decrease the extracellular dopamine level (Roitman et al., 2008). Finally, a subpopulation of dopamine neurons in the ventral VTA respond with bursts to noxious stimuli in anesthetized rats (Brischoux et al., 2009). In line with these observations, intense stress induced in freely moving rats by social defeat enhances burst firing in a subpopulation of VTA dopamine neurons and is associated with an increase in the frequency of dopamine transients in the nucleus accumbens (Anstrom et al., 2009). Therefore, data obtained with electrochemical recording of dopamine transients are highly consistent with electrophysiological data obtained from dopamine neurons.

V. CONCLUSIONS

The extracellular dopamine level results from a dynamic equilibrium between two processes: release and reuptake by dopamine terminals. Both processes are highly regulated by several mechanisms. Apart from these sophisticated means of regulation, the relationship between the discharge activity of dopamine neurons and the extracellular dopamine level is, in first approximation, quite simple. The tonic activity of dopamine neurons is translated into a tonic level of extracellular dopamine and a pause is translated into a profound depression of this tonic level. The bursting activity is translated into transient dopamine overflow, which largely exceeds the tonic level, due to accumulation of released dopamine into the extracellular space. This relationship was first described using electrical stimulation and lesion to manipulate the impulse flow. Recent data obtained in behaving rats fully confirm this relationship.

REFERENCES

Bernard V, Bolam JP (1998) Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus
pallidus of the rat: co-localization at synapses with the GluR2/3 subunit of the AMPA receptor. Eur J Neurosci 10:3721–3736.

Suingos AL, Chavkin C, Colago EE, Pickel VM (2001) Major coex-
Valta R, Meldolesi J, Fesce R (2001) Synaptic vesicles: is kissing a ma-

